Variational Principles for Some Nonlinear Wave Equations
نویسنده
چکیده
Generally speaking, there exist two basic ways to describe a physical problem [1]: (1) by differential equations (DE) with boundary or initial conditions; (2) by variational principles (VP). The VP model has many advantages over its DE partner: simple and compact in form while comprehensive in content, encompassing implicitly almost all information characterizing the problem under consideration [1 – 5]. Variational methods have been, and continue to be, popular tools for nonlinear analysis. When contrasted with other approximate analytical methods, variational methods combine the following two advantages: (1) they provide physical insight into the nature of the solution of the problem; (2) the obtained solutions are the best among all the possible trial functions. The variational-based analytical methods, e. g., the variational iteration method [6 – 11] and He’s variational method [1], have become hot topics in recent publications. Although the variational principles of fluid dynamics [1 – 5] have been studied for a long time, yet the general variational principles of various nonlinear wave equations have not been dealt with systematically. In this paper we illustrate how to establish a variational formulation for a nonlinear problem using the semi-inverse method proposed by Ji-Huan He [2].
منابع مشابه
Solution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کاملExact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کاملSTABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.
Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کامل